LINEAR ALGEBRA MID TERM EXAM

This exam is of $\mathbf{3 0}$ marks and is $\mathbf{3}$ hours long - from 10 am to 1 pm . Please read all the questions carefully. Please feel free to use whatever theorems you have learned in class after stating them clearly.

1. Let V_{N} be the vector space of polynomials over the real numbers of degree $\leq N$ over \mathbb{R}. Let a and b in \mathbb{R} and define a linear functional on V_{N} by

$$
\lambda(p)=\int_{a}^{b} p(t) d t
$$

Let $D: V_{N} \rightarrow V_{N}$ be the differentiation operator on V_{N}.

- What is the matrix of D with respect to the usual basis of V_{N} ?
- What is $\operatorname{det}(D)$
- Is D invertible?
- What is $D^{*}(\lambda)$, where D^{*} is the transpose.

2. Let σ be a permutation of degree n, that is, an element of the symmetric group \mathfrak{S}_{n}. If A is an $n \times n$ matrix with rows $\alpha_{1}, \ldots, \alpha_{n}$, let $\sigma(A)$ be the matrix with rows $\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}$.

- Show that $\sigma(A B)=\sigma(A) B$. In particular $\sigma(A)=\sigma(I) A$.
- Is $\sigma^{-1}(I)$ the inverse of $\sigma(I)$? Justify your answer.
- Is $\sigma(A)$ similar to A ? Justify your answer.

3. Let V_{N} be the polynomials over \mathbb{C} of degree $\leq N$. Let $x_{0}, x_{1}, \ldots, x_{n}$ be in \mathbb{C}. Consider the linear map

$$
\begin{gather*}
\Phi: V_{N} \rightarrow \mathbb{C}^{n+1} \\
\phi(P)=\left(P\left(x_{0}\right), \ldots, P\left(x_{n}\right)\right) \tag{3}
\end{gather*}
$$

- Compute the matrix of Φ with respect to the standard bases of V_{N} and \mathbb{C}^{n+1}.
- Show that the elements $1,\left(x-x_{0}\right),\left(x-x_{0}\right)\left(x-x_{1}\right), \ldots,\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)$ form a basis for V_{N}.
- Compute the change of basis matrix and used that to compute the determinant of Φ.

