LINEAR ALGEBRA MID TERM EXAM

This exam is of **30 marks** and is **3 hours long** - from 10 am to 1pm. Please read all the questions carefully. Please feel free to use whatever theorems you have learned in class after stating them clearly.

1. Let V_N be the vector space of polynomials over the real numbers of degree $\leq N$ over \mathbb{R} . Let a and b in \mathbb{R} and define a linear functional on V_N by

$$\lambda(p) = \int_{a}^{b} p(t)dt$$

Let $D: V_N \to V_N$ be the differentiation operator on V_N .

- What is the matrix of D with respect to the usual basis of V_N ? (3)
- What is $\det(D)$ (2)

(1)

(3)

(3)

- Is D invertible?
- What is $D^*(\lambda)$, where D^* is the transpose. (4)

2. Let σ be a permutation of degree n, that is, an element of the symmetric group \mathfrak{S}_n . If A is an $n \times n$ matrix with rows $\alpha_1, \ldots, \alpha_n$, let $\sigma(A)$ be the matrix with rows $\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}$.

- Show that $\sigma(AB) = \sigma(A)B$. In particular $\sigma(A) = \sigma(I)A$. (4)
- Is $\sigma^{-1}(I)$ the inverse of $\sigma(I)$? Justify your answer. (3)
- Is $\sigma(A)$ similar to A? Justify your answer.
- 3. Let V_N be the polynomials over \mathbb{C} of degree $\leq N$. Let x_0, x_1, \ldots, x_n be in \mathbb{C} . Consider the linear map

$$\Phi: V_N \to \mathbb{C}^{n+1}$$
$$\phi(P) = (P(x_0), \dots, P(x_n))$$

- Compute the matrix of Φ with respect to the standard bases of V_N and \mathbb{C}^{n+1} .
- Show that the elements $1, (x x_0), (x x_0)(x x_1), \dots, (x x_0)(x x_1) \cdots (x x_{n-1})$ form a basis for V_N . (3)
- Compute the change of basis matrix and used that to compute the determinant of Φ . (4)